

DPP - 4 (Magnetic Field & Force)

Video Solution on Website:-

https://physicsaholics.com/home/courseDetails/34

Video Solution on YouTube:-

https://youtu.be/21k4wMpRxBc

Written Solution on Website:-

https://physicsaholics.com/note/notesDetalis/50

Q 1. Lorentz force can be calculated by using the formula (where the symbols have their usual meaning)

(a)
$$\vec{F} = q \left(\vec{E} + (\vec{V} \cdot \vec{B}) \right)$$

(b)
$$\vec{F} = q \left(\vec{E} - (\vec{V} \times \vec{B}) \right)$$

(a)
$$\vec{F} = q \left(\vec{E} + (\vec{V} \cdot \vec{B}) \right)$$
 (b) $\vec{F} = q \left(\vec{E} - (\vec{V} \times \vec{B}) \right)$ (c) $\vec{F} = q \left(\vec{E} + (\vec{V} \times \vec{B}) \right)$ (d) $\vec{F} = q \left(\vec{E} \times \vec{B} + \vec{V} \right)$

(d)
$$\vec{F} = q(\vec{E} \times \vec{B} + \vec{V})$$

A proton moving with a constant velocity passes through a region of space without any Q 2. change in its velocity. If \vec{E} and \vec{B} represent the electric and magnetic fields respectively, then this region of space may not have:

(a)
$$\vec{E} = 0$$
, $\vec{B} = 0$

(b)
$$\vec{E} = 0$$
, $\vec{B} \neq 0$
(d) $\vec{E} \neq 0$, $\vec{B} \neq 0$

(c)
$$\vec{E} \neq 0$$
, $\vec{B} = 0$

(d)
$$\vec{E} \neq 0$$
, $\vec{B} \neq 0$

A proton beam (mass of proton = m) passes without deviation through a region of space Q 3. where there are uniform transverse mutually perpendicular electric and magnetic field with magnitude E and B. Then the beam strikes a grounded target. Find the force imparted by the beam on the target if the beam current is equal to I?

(a)
$$\frac{mEI}{Be}$$

(b)
$$\frac{meI}{BE}$$

$$(c)\frac{2mEl}{Be}$$

(d)
$$\frac{2mel}{BE}$$

- Q 4. A non-relativistic proton beam passes without deviation through a region of space where there are uniform transverse mutually perpendicular electric and magnetic fields with E = 120 kV/m and B = 50 mT. Then the beam strikes a grounded target. Find the force which the beam acts on the target if the beam current is equal to I = 0.8mA. (mass of proton = 1.67×10^{-27} Kg)
 - (a) $20 \mu N$

(b) $2 \mu N$

(c) $15 \mu N$

- (d) $32 \mu N$
- Q 5. In a region of space, both electric and magnetic field are present simultaneously in opposite direction. A positively charged particle is projected with certain speed an angle $\theta(<90^{\circ})$ with magnetic field. It will move in a
 - (a) Helical path of uniform pitch
 - (b) Helical path of increasing pitch
 - (c) Helical path of decreasing pitch
 - (d) Helical path, whose pitch first decreases and then increases
- Q 6. In a certain region uniform electric field E and magnetic field B are present in the opposite direction. At the instant t = 0, a particle of mass m carrying a charge q is given

hysicsaholics

velocity V_o at an angle θ , with the y axis, in the yz plane. The time after which the speed of the particle would be minimum is equal to:

- (a) $\frac{mV_0}{qE}$
- (b) $\frac{mV_0 \sin \theta}{qE}$
- (c) $\frac{mV_0\cos\theta}{qE}$
- (d) $\frac{\pi m V_0 \sin \theta}{qE}$
- Q 7. A charged particle is at rest in the region where magnetic field and electric field are parallel. The particle will move in a
 - (a) Straight line
- (b) Circle

(c) Ellipse

- (d) Helical path
- Q 8. A particle of mass 1×10^{-26} kg and charge $+1.6 \times 10^{-19}$ C travelling with a velocity of 1.28×10^6 m/s along positive direction of x-axis enters a region in which a uniform electric field \vec{E} and a uniform magnetic field \vec{B} are present such that $E_x = E_y = 0$, $E_z = -102.4 \, kV/m$ and $B_x = B_z = 0$, $B_y = 8 \times 10^{-2} \, Wb/m^2$. The particle enters this region at origin at time t=0. Then
 - (a) Net force acts on particle along the +ve z-direction
 - (b) Net force acts on the particle along -ve z-direction
 - (c) Net force acts on the particle is zero
 - (d) Net force acts in x-z plane
- Q 9. A charged particle moves undeflected in a region of crossed electric and magnetic fields. If the electric field is switched off, the particle has an initial acceleration `a`. If the magnetic field is switched off, instead of electric field, the particle will have an initial acceleration (magnitude)
 - (a) Equal to 0
- (b) > a
- (c) Equal to a
- (d) < a
- Q 10. A uniform magnetic field B_0 and electric field E_0 exist along y and negative z axis respectively. Under the influence of these field a charge particle moves along OA undeflected. If electric field is switched off, find the pitch of helical trajectory in which the particle will move.

hysicsaholics

(a) $\frac{2\pi mE_0}{qB_0^2 \tan \theta}$ $4\pi mE_0$

(b) $\frac{2\pi m E_0}{q B_0^2 \cot \theta}$

 $(c) \frac{4\pi m E_0}{q B_0^2 \tan \theta}$

- (d) $\frac{4\pi m E_0}{q B_0^2 \cot \theta}$
- Q 11. A moving charge will gain energy due to the application of
 - (a) Electric field

(b) Magnetic field

(c) Both of these

- (d) None of these
- Q 12. An electron (mass = 9.1×10^{-31} kg; charge = 1.6×10^{-19} C experiences no deflection if subjected to an electric field of 3.2×10^5 V/m, and a magnetic fields of 2.0×10^{-3} Wb/m². Both the fields are normal to the path of electron and to each other. If the electric field is removed, then the electron will revolve in an orbit of radius:
 - (a) 45 m

(b) 4.5 m

(c) 0.45 m

(d) 0.045 m

Answer Key

Q.1 c	Q.2 c	Q.3 a	Q.4 a	Q.5 d
Q.6 b	Q.7 a	Q.8 c	Q.9 с	Q.10 a
Q.11 a	Q.12 c		1	'