DPP - 4 (Magnetic Field \& Force)

Video Solution on Website:-

https://physicsaholics.com/home/courseDetails/34

https://youtu.be/21k4wMpRxBc

https://physicsaholics.com/note/notesDetalis/50

Written Solution on Website:-

Video Solution on YouTube:-

Q 1. Lorentz force can be calculated by using the formula (where the symbols have their usual meaning)
(a) $\vec{F}=q(\vec{E}+(\vec{V} \cdot \vec{B}))$
(b) $\vec{F}=q(\vec{E}-(\vec{V} \times \vec{B}))$
(c) $\vec{F}=q(\vec{E}+(\vec{V} \times \vec{B}))$
(d) $\vec{F}=q(\vec{E} \times \vec{B}+\vec{V})$

Q 2. A proton moving with a constant velocity passes through a region of space without any change in its velocity. If \vec{E} and \vec{B} represent the electric and magnetic fields respectively, then this region of space may not have:
(a) $\vec{E}=0, \vec{B}=0$
(b) $\vec{E}=0, \vec{B} \neq 0$
(c) $\vec{E} \neq 0, \vec{B}=0$
(d) $\vec{E} \neq 0, \vec{B} \neq 0$

Q 3. A proton beam (mass of proton $=m$) passes without deviation through a region of space where there are uniform transverse mutually perpendicular electric and magnetic field with magnitude E and B. Then the beam strikes a grounded target. Find the force imparted by the beam on the target if the beam current is equal to I?
(a) $\frac{m E I}{B e}$
(b) $\frac{m e I}{B E}$
(c) $\frac{2 m E l}{B e}$
(d) $\frac{2 m e I}{B E}$

Q 4. A non-relativistic proton beam passes without deviation through a region of space where there are uniform transyerse mutually perpendicular electric and magnetic fields with $E=120 \mathrm{kV} / \mathrm{m}$ and $B=50 \mathrm{mT}$. Then the beam strikes a grounded target. Find the force which the beam acts on the target if the beam current is equal to $\mathrm{I}=0.8$ mA . (mass of proton $=1.67 \times 10^{-27} \mathrm{Kg}$)
(a) $20 \mu \mathrm{~N}$
(b) $2 \mu \mathrm{~N}$
(c) $15 \mu N$
(d) $32 \mu N$

Q 5. In a region of space, both electric and magnetic field are present simultaneously in opposite direction. A positively charged particle is projected with certain speed an angle $\theta\left(<90^{0}\right)$ with magnetic field. It will move in a
(a) Helical path of uniform pitch
(b) Helical path of increasing pitch
(c) Helical path of decreasing pitch
(d) Helical path, whose pitch first decreases and then increases

Q 6. In a certain region uniform electric field E and magnetic field B are present in the opposite direction. At the instant $t=0$, a particle of mass m carrying a charge q is given
velocity V_{o} at an angle θ, with the y axis, in the yz plane. The time after which the speed of the particle would be minimum is equal to:

(a) $\frac{m V_{0}}{q E}$
(b) $\frac{m V_{0} \sin \theta}{q E}$
(c) $\frac{m V_{0} \cos \theta}{q E}$
(d) $\frac{\pi m V_{0} \sin \theta}{q E}$

Q 7. A charged particle is at rest in the region where magnetic field and electric field are parallel. The particle will move in a
(a) Straight line
(b) Circle
(c) Ellipse
(d) Helical path

Q 8. A particle of mass $1 \times 10^{-26} \mathrm{~kg}$ and charge $+1.6 \times 10^{-19} \mathrm{C}$ travelfing with a velocity of $1.28 \times 10^{6} \mathrm{~m} / \mathrm{s}$ along positive direction of X-axis enters a region in which a uniform electric field \vec{E} and a uniform magnetic field \vec{B} are present such that $E_{x}=E_{y}=0, E_{z}=$ $-102.4 \mathrm{kV} / \mathrm{m}$ and $B_{x}=B_{z}=0, B_{y}=8 \times 10^{-2} \mathrm{~Wb} / \mathrm{m}^{2}$. The particle enters this region at origin at time $\mathrm{t}=0$. Then
(a) Net force acts on particle along the +ye z-direction
(b) Net force acts on the particle along - ve z-direction
(c) Net force acts on the particle is zero
(d) Net force acts in $x-z$ plane

Q 9. A charged particlemoves undeflected in a region of crossed electric and magnetic fields. If the electric field is switched off, the particle has an initial acceleration `a`. If the magnetic field is switched off, instead of electric field, the particle will have an initial acceleration (magnitude)
(a) Equal to 0
(b) $>\mathrm{a}$
(c) Equal to a
(d) $<$ a

Q 10. A uniform magnetic field B_{0} and electric field E_{0} exist along y and negative z axis respectively. Under the influence of these field a charge particle moves along OA undeflected. If electric field is switched off, find the pitch of helical trajectory in which the particle will move.

(a) $\frac{2 \pi m E_{0}}{q B_{0}^{2} \tan \theta}$
(b) $\frac{2 \pi m E_{0}}{q B_{0}^{2} \cot \theta}$
(c) $\frac{4 \pi m E_{0}}{q B_{0}^{2} \tan \theta}$
(d) $\frac{4 \pi m E_{0}}{q B_{0}^{2} \cot \theta}$

Q 11. A moving charge will gain energy due to the application of
(a) Electric field
(b) Magnetic field
(c) Both of these
(d) None of these

Q 12. An electron (mass $=9.1 \times 10^{-31} \mathrm{~kg}$; charge $=1.6 \times 10^{-19} \mathrm{C}$ experiences no deflection if subjected to an electric field of $3.2 \times 10^{5} \mathrm{~V} / \mathrm{m}$, and a magnetic fields of $2.0 \times 10^{-3} \mathrm{~Wb} / \mathrm{m}^{2}$. Both the fields are normal to the path of electron and to each other. If the electric field is removed, then the electron will revolve in an orbit of radius:
(a) 45 m
(b) 4.5 m
(c) 0.45 m
(d) 0.045 m

Answer Key

Q. 1 c	Q. 2 c	Q. 3 a	Q. 4 a	Q. 5 d
Q. 6 b	Q. 7 a	Q. 8 c	Q. 9 c	Q. 10 a
Q. 11 a	Q. 12 c			

